bec-1;daf-16

Lifespan changes: From wild type to bec-1;daf-16 / From bec-1;daf-16 to multiple mutants

There is no network for this step.
Fullscreen mode
Hide graph
Legend

Genetic mutants with bec-1, daf-16 alterations

    Names of genes are ordered alphabetically. For the order of interventions, please see the specific paper.
  • Temperature °C

    20

  • Lifespan (days)

    13.6

  • Lifespan comparisons

    Double mutant bec-1(RNAi);daf-16(mgDf50) has a lifespan of 13.6 days, while single mutant daf-16(mgDf50) has a lifespan of 11.6 days.

  • Citation
    View abstract

    Hashimoto Y et al., 2009, Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans. Genes Cells. 14(6):717-26 PubMed 19469880 Click here to select all mutants from this PubMed ID in the graph

Search genes: bec-1 daf-16
  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

Beclin homolog


Locus: CELE_T19E7.3


Wormbase description: bec-1 encodes a coiled-coil protein orthologous to the yeast and mammalian autophagy proteins Atg6/Vps30/Beclin1; by homology, BEC-1 may be part of a Class III phosphatidylinositol 3-kinase complex that plays a role in localizing autophagy proteins to preautophagosomal structures and overexpression of C. elegans bec-1 in S. cerevisiae APG6/VPS30 mutants can rescue associated autophagy defects; bec-1 is also required for regulation of endocytic retrograde transport; in C. elegans, bec-1 activity is required for normal dauer morphogenesis and survival of dauer larvae, as well as for adult life span extension of daf-2(e1370) mutants at 15 degrees; in addition, bec-1(RNAi) indicates a role for bec-1 in normal growth rates, movement, and vulval morphogenesis; a bec-1::GFP reporter fusion is expressed in the hypodermis, intestine, nervous system, pharynx, and reproductive organs, all tissues that are remodeled during dauer larval development.


  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

Forkhead box protein O;hypothetical protein


Locus: CELE_R13H8.1


Wormbase description: daf-16 encodes the sole C. elegans forkhead box O (FOXO) homologue; DAF-16 functions as a transcription factor that acts in the insulin/IGF-1-mediated signaling (IIS) pathway that regulates dauer formation, longevity, fat metabolism, stress response, and innate immunity; DAF-16 regulates these various processes through isoform-specific expression, isoform-specific regulation by different AKT kinases, and differential regulation of target genes; DAF-16 can interact with the CBP-1 transcription cofactor in vitro, and interacts genetically with other genes in the insulin signaling and with daf-12, which encodes a nuclear hormone receptor; DAF-16 is activated in response to DNA damage during development and co-regulated by EGL-27, alleviates DNA-damage-induced developmental arrest by inducing DAF-16-associated element (DAE)-regulated genes; DAF-16 is broadly expressed but displays isoform-specific tissue enrichment; DAF-16 localizes to both the cytoplasm and the nucleus, with the ratio between the two an important regulator of function.


Orthologs of bec-1;daf-16 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of bec-1 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of daf-16 in SynergyAge
Show in SynergyAge
Species Gene
About

SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.

Read more about SynergyAge database

How to cite us

If you would like to cite this database please use:

Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z

Contact
Robi Tacutu, Ph.D.
Head: Systems Biology of Aging Group, Bioinformatics & Structural Biochemistry Department
Institute of Biochemistry, Ground floor
Splaiul Independentei 296, Bucharest, Romania
Email:

Group webpage: www.aging-research.group