eat-2;mdl-1

Lifespan changes: From wild type to eat-2;mdl-1

There is no network for this step.
Fullscreen mode
Hide graph
Legend

Genetic mutants with eat-2, mdl-1 alterations

    Names of genes are ordered alphabetically. For the order of interventions, please see the specific paper.
  • Temperature °C

    20

  • Diet

    HT115

  • Lifespan (days)

    32.0

  • Lifespan change (compared to wild type)

    60.00%

  • Lifespan comparisons

    Double mutant eat-2(ad465);mdl-1(RNAi) has a lifespan of 32.0 days, while single mutant eat-2(ad465) has a lifespan of 30.0 days and wild type has a lifespan of 20.0 days.

  • Type of interaction
    See methods

    Partially known monotony. Positive epistasis

  • Citation
    View abstract

    Johnson DW et al., 2014, The Caenorhabditis elegans Myc-Mondo/Mad complexes integrate diverse longevity signals. PLoS Genet. 10(4):e1004278 PubMed 24699255 Click here to select all mutants from this PubMed ID in the graph

Search genes: eat-2 mdl-1
  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

Neuronal acetylcholine receptor subunit eat-2


Locus: CELE_Y48B6A.4


Wormbase description: eat-2 encodes a ligand-gated ion channel subunit most closely related to the non-alpha-subunits of nicotinic acetylcholine receptors (nAChR); EAT-2 functions postsynaptically in pharyngeal muscle to regulate the rate of pharyngeal pumping; eat-2 is also required for normal life span and defecation; a functional EAT-2::GFP fusion protein localizes to two small dots near the junction of pharyngeal muscles pm4 and pm5, which is the site of the posterior-most MC motor neuron processes and the MC synapse; eat-2 genetically interacts with eat-18, which encodes a predicted novel transmembrane protein expressed in pharyngeal muscle and required for proper function of pharyngeal nicotonic receptors.


  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

MAD-Like


Locus: CELE_R03E9.1


Wormbase description: mdl-1 encodes a basic helix-loop-helix (bHLH) protein similar to the vertebrate MAD transcriptional regulators; in vitro, MDL-1 can heterodimerize, and bind an E-box DNA sequence, with MXL-1, a C. elegans MAX-like bHLH protein; when expressed in rat embryonic fibroblasts, MDL-1 is able to suppress c-MYC/RAS-induced cell transformation, in a manner dependent upon an intact, predicted SIN3 interaction domain; mdl-1::gfp promoter fusions are expressed in a number of different tissues, including the posterior intestine, anterior and ventral cord neurons, pharyngeal and body wall muscles, somatic gonad precursors, and hypodermal cells; yeast one-hybrid and ChIP experiments indicate that DAF-3/Smad can bind the mdl-1 promoter; in addition, mdl-1 pharyngeal expression is specifically increased in daf-3(RNAi) animals, suggesting that DAF-3 directly negatively regulates mdl-1 transcription in pharyngeal tissue during dauer formation.


Orthologs of eat-2;mdl-1 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of eat-2 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of mdl-1 in SynergyAge
Show in SynergyAge
Species Gene
About

SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.

Read more about SynergyAge database

How to cite us

If you would like to cite this database please use:

Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z

Contact
Robi Tacutu, Ph.D.
Head: Systems Biology of Aging Group, Bioinformatics & Structural Biochemistry Department
Institute of Biochemistry, Ground floor
Splaiul Independentei 296, Bucharest, Romania
Email:

Group webpage: www.aging-research.group