Lifespan changes: From wild type to ifg-1;let-711
25
NGM
19.8
-13.54%
Double mutant ifg-1(cxTi9279);let-711(RNAi) has a lifespan of 19.8 days, while single mutant let-711(RNAi) has a lifespan of 15.3 days, single mutant ifg-1(cxTi9279) has a lifespan of 28.3 days and wild type has a lifespan of 22.9 days.
Opposite lifespan effects of single mutants
Rogers AN et al., 2011, Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 14(1):55-66 21723504 Click here to select all mutants from this PubMed ID in the graph
25
NGM
21.0
3.45%
Double mutant ifg-1(cxTi9279);let-711(RNAi) has a lifespan of 21.0 days, while single mutant let-711(RNAi) has a lifespan of 19.0 days, single mutant ifg-1(cxTi9279) has a lifespan of 27.8 days and wild type has a lifespan of 20.3 days.
Opposite lifespan effects of single mutants
Rogers AN et al., 2011, Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 14(1):55-66 21723504 Click here to select all mutants from this PubMed ID in the graph
Initiation Factor 4G (eIF4G) family
Locus: CELE_M110.4
Wormbase description: ifg-1 encodes, by alternative splicing, two orthologs of the translation initiation factor 4F, ribosome/mRNA-bridging subunit (eIF-4G); by homology, IFG-1 is predicted to function in poly(A) tail-dependent translation initiation; loss of ifg-1 activity in adult animals extends lifespan.
hypothetical protein
Locus: CELE_F57B9.2
Wormbase description: let-711 encodes the C. elegans ortholog of NOT1, the conserved core component of the multisubunit CCR4/NOT complex that plays a role in regulation of gene expression via various processes including transcriptional control, mRNA deadenylation, and protein ubiquitination; in C. elegans, let-711 activity is essential for embryonic and larval development and in particular, for proper spindle positioning, microtubule length, and centrosome morphology in early embryos; in addition, let-711 is essential for normal germline development and levels of fertility; in embryos, let-711 mutations can suppress the short microtubule phenotype produced by mutations in zyg-9, which encodes the C. elegans XMAP125 homolog, and centrosomoal ZYG-9 levels are increased in let-711 mutants, suggesting that let-711 functions, in part, by negatively regulating ZYG-9 levels or localization; in situ hybridization studies indicate that let-711 mRNA is broadly expressed in the gonad and that its gonadal expression is negatively regulated by lin-35/Rb.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group