Lifespan changes: From wild type to aak-2;let-711
25
NGM
17.3
-14.78%
Double mutant aak-2(ok524);let-711(RNAi) has a lifespan of 17.3 days, while single mutant let-711(RNAi) has a lifespan of 19.0 days, single mutant aak-2(ok524) has a lifespan of 17.1 days and wild type has a lifespan of 20.3 days.
Dependent
Rogers AN et al., 2011, Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 14(1):55-66 21723504 Click here to select all mutants from this PubMed ID in the graph
5'-AMP-activated protein kinase catalytic subunit alpha-2
Locus: CELE_T01C8.1
Wormbase description: aak-2 encodes one of two C. elegans homologs of the catalytic alpha subunit of AMP-activated protein kinases (AMPKs); in C. elegans, aak-2 functions downstream of environmental stressors, energy level signals (AMP:ATP ratio), and daf-2-mediated insulin signaling to positively regulate adult lifespan; in regulating lifespan, aak-2 likely acts in parallel with daf-16/FOXO; aak-2 activity is also required for dauer formation in daf-2 mutant animals at high temperature in a manner independent of the AMP:ATP ratio; in the germline, aak-2 functions downstream of daf-2 and daf-7, and in parallel to par-4 and aak-1, to negatively regulate germline proliferation during dauer development; in vitro, AAK-2 exhibits AMP-enhanced kinase activity against a known AMPK substrate, the SAMS peptide.
hypothetical protein
Locus: CELE_F57B9.2
Wormbase description: let-711 encodes the C. elegans ortholog of NOT1, the conserved core component of the multisubunit CCR4/NOT complex that plays a role in regulation of gene expression via various processes including transcriptional control, mRNA deadenylation, and protein ubiquitination; in C. elegans, let-711 activity is essential for embryonic and larval development and in particular, for proper spindle positioning, microtubule length, and centrosome morphology in early embryos; in addition, let-711 is essential for normal germline development and levels of fertility; in embryos, let-711 mutations can suppress the short microtubule phenotype produced by mutations in zyg-9, which encodes the C. elegans XMAP125 homolog, and centrosomoal ZYG-9 levels are increased in let-711 mutants, suggesting that let-711 functions, in part, by negatively regulating ZYG-9 levels or localization; in situ hybridization studies indicate that let-711 mRNA is broadly expressed in the gonad and that its gonadal expression is negatively regulated by lin-35/Rb.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group