Lifespan changes: From wild type to aak-2;mdt-15
25
NGM
12.2
-39.90%
Double mutant aak-2(ok524);mdt-15(RNAi) has a lifespan of 12.2 days, while single mutant mdt-15(RNAi) has a lifespan of 16.7 days, single mutant aak-2(ok524) has a lifespan of 17.1 days and wild type has a lifespan of 20.3 days.
Synergistic (negative)
Rogers AN et al., 2011, Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 14(1):55-66 21723504 Click here to select all mutants from this PubMed ID in the graph
5'-AMP-activated protein kinase catalytic subunit alpha-2
Locus: CELE_T01C8.1
Wormbase description: aak-2 encodes one of two C. elegans homologs of the catalytic alpha subunit of AMP-activated protein kinases (AMPKs); in C. elegans, aak-2 functions downstream of environmental stressors, energy level signals (AMP:ATP ratio), and daf-2-mediated insulin signaling to positively regulate adult lifespan; in regulating lifespan, aak-2 likely acts in parallel with daf-16/FOXO; aak-2 activity is also required for dauer formation in daf-2 mutant animals at high temperature in a manner independent of the AMP:ATP ratio; in the germline, aak-2 functions downstream of daf-2 and daf-7, and in parallel to par-4 and aak-1, to negatively regulate germline proliferation during dauer development; in vitro, AAK-2 exhibits AMP-enhanced kinase activity against a known AMPK substrate, the SAMS peptide.
Mediator of RNA polymerase II transcription subunit 15
Locus: CELE_R12B2.5
Wormbase description: mdt-15 encodes, by alternative splicing, two isoforms of a Mediator subunit orthologous to human MED15; together with NHR-49 and SBP-1, MDT-15 is required for normal fat accumulation, for expression of fatty acid (FA) desaturase genes (fat-5, fat-6, and fat-7), for normal levels of mono- and polyunsaturated FAs (PUFAs), and for viability, fecundity, mobility, and normally long lifespan; several of these phenotypes can be at least partially suppressed by supplying PUFAs in the food medium; in part through NHR-49, MDT-15 participates in basal and fasting-induced transcription of numerous other metabolic genes, such as gei-7 and acs-2; independently of NHR-49 and SBP-1, MDT-15 ensures appropriate transcriptional response and survival in response to toxins and heavy metals by inducing select detoxification genes encoding such as cdr-1, cyp-35C1, gst-5, mtl-1, mtl-2, ugt-1, ugt-8, and others; mdt-15 is expressed at constant levels from embryos to adulthood, in several head neurons and intestine; MDT-15 binds NHR-49 and NHR-64 in yeast two-hybrid assays, and SBP-1 in GST pull-down assays.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group