let-711;rsks-1

Lifespan changes: From wild type to let-711;rsks-1

There is no network for this step.
Fullscreen mode
Hide graph
Legend

Genetic mutants with let-711, rsks-1 alterations

    Names of genes are ordered alphabetically. For the order of interventions, please see the specific paper.
  • Temperature °C

    25

  • Diet

    NGM

  • Lifespan (days)

    28.1

  • Lifespan change (compared to wild type)

    38.42%

  • Lifespan comparisons

    Double mutant let-711(RNAi);rsks-1(ok1255) has a lifespan of 28.1 days, while single mutant let-711(RNAi) has a lifespan of 19.0 days, single mutant rsks-1(ok1255) has a lifespan of 28.1 days and wild type has a lifespan of 20.3 days.

  • Type of interaction
    See methods

    Opposite lifespan effects of single mutants

  • Citation
    View abstract

    Rogers AN et al., 2011, Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 14(1):55-66 PubMed 21723504 Click here to select all mutants from this PubMed ID in the graph

Search genes: let-711 rsks-1
  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

hypothetical protein


Locus: CELE_F57B9.2


Wormbase description: let-711 encodes the C. elegans ortholog of NOT1, the conserved core component of the multisubunit CCR4/NOT complex that plays a role in regulation of gene expression via various processes including transcriptional control, mRNA deadenylation, and protein ubiquitination; in C. elegans, let-711 activity is essential for embryonic and larval development and in particular, for proper spindle positioning, microtubule length, and centrosome morphology in early embryos; in addition, let-711 is essential for normal germline development and levels of fertility; in embryos, let-711 mutations can suppress the short microtubule phenotype produced by mutations in zyg-9, which encodes the C. elegans XMAP125 homolog, and centrosomoal ZYG-9 levels are increased in let-711 mutants, suggesting that let-711 functions, in part, by negatively regulating ZYG-9 levels or localization; in situ hybridization studies indicate that let-711 mRNA is broadly expressed in the gonad and that its gonadal expression is negatively regulated by lin-35/Rb.


  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

Ribosomal protein S6 kinase beta


Locus: CELE_Y47D3A.16


Wormbase description: rsks-1 encodes a putative ribosomal protein S6 kinase (S6K) required additively with IFG-1 for normally high levels of protein synthesis, and for normally short lifespan; RSKS-1's effect on lifespan is independent of DAF-16, ISP-1, and SIR-2.1, and does not correlate with juglone resistance, but does correlate with abnormally high resistance to starvation and (perhaps) thermotolerance; RSKS-1 is required for normal juglone resistance, as well as normally rapid growth and normal brood sizes; RSKS-1 is expressed in E-lineage embryonic cells, and in pharyngeal and hypodermal cells of larvae and adults; RSKS-1 is orthologous to human RPS6KB1 (OMIM:608938) and RPS6KB2 (OMIM:608939).


Orthologs of let-711;rsks-1 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of let-711 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of rsks-1 in SynergyAge
Show in SynergyAge
Species Gene
About

SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.

Read more about SynergyAge database

How to cite us

If you would like to cite this database please use:

Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z

Contact
Robi Tacutu, Ph.D.
Head: Systems Biology of Aging Group, Bioinformatics & Structural Biochemistry Department
Institute of Biochemistry, Ground floor
Splaiul Independentei 296, Bucharest, Romania
Email:

Group webpage: www.aging-research.group