Lifespan changes: From wild type to cup-4;skn-1
20
NGM
17.6
-20.00%
Double mutant cup-4(ok837);skn-1(RNAi) has a lifespan of 17.6 days, while single mutant cup-4(ok837) has a lifespan of 18.0 days and wild type has a lifespan of 22.0 days.
Partially known monotony. Negative epistasis
Park SK et al., 2010, Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans. FASEB J. 24(2):383-92 19783783 Click here to select all mutants from this PubMed ID in the graph
20
NGM
15.1
-31.67%
Double mutant cup-4(ok837);skn-1(RNAi) has a lifespan of 15.1 days, while single mutant cup-4(ok837) has a lifespan of 17.0 days and wild type has a lifespan of 22.1 days.
Partially known monotony. Negative epistasis
Park SK et al., 2010, Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans. FASEB J. 24(2):383-92 19783783 Click here to select all mutants from this PubMed ID in the graph
Acetylcholine receptor-like protein cup-4
Locus: CELE_C02C2.3
Wormbase description: cup-4 encodes a non-alpha ligand-gated ion channel with similarity to the nicotinic acetylcholine receptors; cup-4 is required cell autonomously for efficient fluid endocytosis in coelomocytes; cup-4 mutant animals display reduced levels of plasma membrane phosphatidylinositol 4,5-bisphosphate, suggesting that CUP-4 may regulate endocytosis via regulation of phospholipase C activity; in addition, cup-4 mutants display disorganized clathrin and RME-1 at the coelomocyte plasma membrane; CUP-4::GFP is expressed in coelomocytes where it localizes to the cytoplasm, primarily to cytoplasmic vesicles.
Protein skinhead-1;SKiNhead
Locus: CELE_T19E7.2
Wormbase description: skn-1 encodes a bZip transcription factor orthologous to the mammalian Nrf (Nuclear factor-erythroid-related factor) transcription factors; during early embryogenesis, maternally provided SKN-1 is required for specification of the EMS blastomere, a mesendodermal precursor that gives rise to pharyngeal, muscle, and intestinal cells; later, during postembryonic development, SKN-1 functions in the p38 MAPK pathway to regulate the oxidative stress response and in parallel to DAF-16/FOXO in the DAF-2-mediated insulin/IGF-1-like signaling pathway to regulate adult lifespan; in vitro assays indicate that SKN-1 can be directly phosphorylated by the AKT-1, AKT-2, and SGK-1 kinases that lie downstream of DAF-2 in the insulin signaling pathway and in vivo experiments suggest that this phosphorylation is essential for regulation of SKN-1 nuclear accumulation and hence, transcriptional regulator activity; in the early embryo, SKN-1 is detected at highest levels in nuclei of the P1 blastomere and its descendants through the 8-cell stage of embryogenesis; later in embryogenesis, SKN-1 is observed in all hypodermal and intestinal nuclei, with reporter constructs indicating that intestinal expression begins as early as the 50-100-cell stage; in larvae and young adults, SKN-1::GFP reporters are expressed in the intestine and ASI neurons, with expression in intestinal nuclei enhanced under conditions of stress or reduced DAF-2 signaling.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group