Lifespan changes: From wild type to eat-2;pha-4
15
13.7
-24.31%
RNA interference (RNAi) of pha-4 completely suppressed the long lifespan of eat-2(ad1116) mutant animals
Double mutant eat-2(ad1116);pha-4(RNAi) has a lifespan of 13.7 days, while single mutant eat-2(ad1116) has a lifespan of 23.8 days and wild type has a lifespan of 18.1 days.
Contains dependence
Panowski SH et al., 2007, PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature. 447(7144):550-5 17476212 Click here to select all mutants from this PubMed ID in the graph
Neuronal acetylcholine receptor subunit eat-2
Locus: CELE_Y48B6A.4
Wormbase description: eat-2 encodes a ligand-gated ion channel subunit most closely related to the non-alpha-subunits of nicotinic acetylcholine receptors (nAChR); EAT-2 functions postsynaptically in pharyngeal muscle to regulate the rate of pharyngeal pumping; eat-2 is also required for normal life span and defecation; a functional EAT-2::GFP fusion protein localizes to two small dots near the junction of pharyngeal muscles pm4 and pm5, which is the site of the posterior-most MC motor neuron processes and the MC synapse; eat-2 genetically interacts with eat-18, which encodes a predicted novel transmembrane protein expressed in pharyngeal muscle and required for proper function of pharyngeal nicotonic receptors.
Defective pharyngeal development protein 4
Locus: CELE_F38A6.1
Wormbase description: pha-4 encodes a FoxA transcription factor; during embryonic development, PHA-4 functions as an organ identity gene whose activity is necessary and sufficient for development of the pharynx/foregut; in addition, PHA-4 plays a key role in regulation of diet-restriction-induced longevity in adult animals; PHA-4 expression begins early in embryogenesis and is seen in pharyngeal and intestinal cells (foregut and midgut); PHA-4 is also expressed later in the developing somatic gonad.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group