eat-2;raga-1

Lifespan changes: From wild type to eat-2;raga-1

There is no network for this step.
Fullscreen mode
Hide graph
Legend

Genetic mutants with eat-2, raga-1 alterations

    Names of genes are ordered alphabetically. For the order of interventions, please see the specific paper.
  • Temperature °C

    20

  • Diet

    NGM

  • Lifespan (days)

    18.6

  • Phenotype

    Double mutants with eat-2 (ad1116) indicated that raga-1(ok386) was not susceptible to the lifespan extension effects of dietary restriction using this genetic model, as the double mutants had similar lifespan extension to the respective single eat-2 mutants.

  • Lifespan comparisons

    Double mutant eat-2(ad1116);raga-1(ok386) has a lifespan of 18.6 days, while single mutant eat-2(ad1116) has a lifespan of 18.9 days.

  • Citation
    View abstract

    Schreiber MA et al., 2010, Manipulation of behavioral decline in Caenorhabditis elegans with the Rag GTPase raga-1. PLoS Genet. 6(5):e1000972 PubMed 20523893 Click here to select all mutants from this PubMed ID in the graph

    Names of genes are ordered alphabetically. For the order of interventions, please see the specific paper.
  • Temperature °C

    20

  • Diet

    NGM

  • Lifespan (days)

    17.6

  • Lifespan comparisons

    Double mutant eat-2(ad465);raga-1(ok386) has a lifespan of 17.6 days, while single mutant eat-2(ad465) has a lifespan of 16.7 days.

  • Citation
    View abstract

    Schreiber MA et al., 2010, Manipulation of behavioral decline in Caenorhabditis elegans with the Rag GTPase raga-1. PLoS Genet. 6(5):e1000972 PubMed 20523893 Click here to select all mutants from this PubMed ID in the graph

  • Temperature °C

    20

  • Diet

    NGM

  • Lifespan (days)

    17.4

  • Lifespan comparisons

    Double mutant eat-2(ad465);raga-1(ok386) has a lifespan of 17.4 days, while single mutant eat-2(ad465) has a lifespan of 13.7 days.

  • Citation
    View abstract

    Schreiber MA et al., 2010, Manipulation of behavioral decline in Caenorhabditis elegans with the Rag GTPase raga-1. PLoS Genet. 6(5):e1000972 PubMed 20523893 Click here to select all mutants from this PubMed ID in the graph

Search genes: eat-2 raga-1
  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

Neuronal acetylcholine receptor subunit eat-2


Locus: CELE_Y48B6A.4


Wormbase description: eat-2 encodes a ligand-gated ion channel subunit most closely related to the non-alpha-subunits of nicotinic acetylcholine receptors (nAChR); EAT-2 functions postsynaptically in pharyngeal muscle to regulate the rate of pharyngeal pumping; eat-2 is also required for normal life span and defecation; a functional EAT-2::GFP fusion protein localizes to two small dots near the junction of pharyngeal muscles pm4 and pm5, which is the site of the posterior-most MC motor neuron processes and the MC synapse; eat-2 genetically interacts with eat-18, which encodes a predicted novel transmembrane protein expressed in pharyngeal muscle and required for proper function of pharyngeal nicotonic receptors.


  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

RAs-related GTP-binding protein A


Locus: CELE_T24F1.1


Wormbase description: raga-1 encodes the C. elegans ortholog of the ras-related GTPase RagA; in C. elegans RAGA-1 functions as a modifier of behavioral aging and adult lifespan (particularly under high food concentration); raga-1 mutations also affect body size and reproduction; genetic analyses suggest that raga-1 functions in the let-363/Tor pathway to regulate behavioral aging and lifespan and also interacts with the daf-2/daf-16 insulin signaling pathway and skn-1; raga-1 reporter fusions are widely expressed in larvae, with more restricted expression (gut, head and tail neurons, somatic gonad, hypodermis) seen in adults.


Orthologs of eat-2;raga-1 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of eat-2 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of raga-1 in SynergyAge
Show in SynergyAge
Species Gene
About

SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.

Read more about SynergyAge database

How to cite us

If you would like to cite this database please use:

Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z

Contact
Robi Tacutu, Ph.D.
Head: Systems Biology of Aging Group, Bioinformatics & Structural Biochemistry Department
Institute of Biochemistry, Ground floor
Splaiul Independentei 296, Bucharest, Romania
Email:

Group webpage: www.aging-research.group