daf-16;ftt-1

Lifespan changes: From wild type to daf-16;ftt-1

There is no network for this step.
Fullscreen mode
Hide graph
Legend

Genetic mutants with daf-16, ftt-1 alterations

    Names of genes are ordered alphabetically. For the order of interventions, please see the specific paper.
  • Temperature °C

    20

  • Diet

    OP50

  • Lifespan (days)

    14.0

  • Lifespan change (compared to wild type)

    -25.93%

  • Phenotype

    The ftt-1 gene doesn't modulate life span in daf-16 loss-of-function genetic background.

  • Lifespan comparisons

    Double mutant daf-16(mgDf50);ftt-1(RNAi) has a lifespan of 14.0 days, while single mutant ftt-1(RNAi) has a lifespan of 16.4 days, single mutant daf-16(mgDf50) has a lifespan of 13.9 days and wild type has a lifespan of 18.9 days.

  • Type of interaction
    See methods

    Dependent

  • Citation
    View abstract

    Araiz C et al., 2008, 14-3-3 regulates life span by both DAF-16-dependent and -independent mechanisms in Caenorhabditis elegans. Exp Gerontol. 43(6):505-19 PubMed 18423931 Click here to select all mutants from this PubMed ID in the graph

  • Temperature °C

    22.5

  • Diet

    OP50

  • Lifespan (days)

    8.7

  • Lifespan change (compared to wild type)

    -54.21%

  • Phenotype

    The ftt-1 gene doesn't modulate life span in daf-16 loss-of-function genetic background.

  • Lifespan comparisons

    Double mutant daf-16(mgDf50);ftt-1(RNAi) has a lifespan of 8.7 days, while single mutant ftt-1(RNAi) has a lifespan of 16.4 days, single mutant daf-16(mgDf50) has a lifespan of 13.0 days and wild type has a lifespan of 19.0 days.

  • Type of interaction
    See methods

    Synergistic (negative)

  • Citation
    View abstract

    Araiz C et al., 2008, 14-3-3 regulates life span by both DAF-16-dependent and -independent mechanisms in Caenorhabditis elegans. Exp Gerontol. 43(6):505-19 PubMed 18423931 Click here to select all mutants from this PubMed ID in the graph

Search genes: daf-16 ftt-1
  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

Forkhead box protein O;hypothetical protein


Locus: CELE_R13H8.1


Wormbase description: daf-16 encodes the sole C. elegans forkhead box O (FOXO) homologue; DAF-16 functions as a transcription factor that acts in the insulin/IGF-1-mediated signaling (IIS) pathway that regulates dauer formation, longevity, fat metabolism, stress response, and innate immunity; DAF-16 regulates these various processes through isoform-specific expression, isoform-specific regulation by different AKT kinases, and differential regulation of target genes; DAF-16 can interact with the CBP-1 transcription cofactor in vitro, and interacts genetically with other genes in the insulin signaling and with daf-12, which encodes a nuclear hormone receptor; DAF-16 is activated in response to DNA damage during development and co-regulated by EGL-27, alleviates DNA-damage-induced developmental arrest by inducing DAF-16-associated element (DAE)-regulated genes; DAF-16 is broadly expressed but displays isoform-specific tissue enrichment; DAF-16 localizes to both the cytoplasm and the nucleus, with the ratio between the two an important regulator of function.


  • Symbol
  • GenAge

No gene information for ftt-1


Orthologs of daf-16;ftt-1 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of daf-16 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of ftt-1 in SynergyAge
Show in SynergyAge
Species Gene
About

SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.

Read more about SynergyAge database

How to cite us

If you would like to cite this database please use:

Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z

Contact
Robi Tacutu, Ph.D.
Head: Systems Biology of Aging Group, Bioinformatics & Structural Biochemistry Department
Institute of Biochemistry, Ground floor
Splaiul Independentei 296, Bucharest, Romania
Email:

Group webpage: www.aging-research.group