Lifespan changes: From wild type to daf-12;daf-16;daf-2
20
12.2
The synergistically enhanced life span of daf-2( e1370) ; daf-12( m20) is completely suppressed by daf-16( m26) in a triple mutant. These results indicate that daf-16 acts downstream of daf-2 and daf-I2 with respect to life span
Triple mutant daf-12(m20);daf-16(m26);daf-2(e1370) has a lifespan of 12.2 days, while double mutant daf-12(m20);daf-2(e1370) has a lifespan of 41.4 days.
Contains dependence
Larsen PL et al., 1995, Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics. 139(4):1567-83 7789761 Click here to select all mutants from this PubMed ID in the graph
Nuclear hormone receptor family member daf-12
Locus: CELE_F11A1.3
Wormbase description: daf-12 encodes a member of the steroid hormone receptor superfamily that is homologous to human VITAMIN D RECEPTOR (VDR; OMIM:601769, mutated in vitamin D-resistant rickets); daf-12 affects dauer formation downstream of the TGF- and insulin signaling pathways, and affects gonad-dependent adult longevity together with DAF-16, chemosensory signal transduction, and distal tip cell migration and hypodermal and intestinal cell lineages during the L3 larval stage; DAF-12 is expressed in the nucleus and in most cells; daf-12 expression in lateral seam cells is negatively regulated by the let-7 miRNA.
Forkhead box protein O;hypothetical protein
Locus: CELE_R13H8.1
Wormbase description: daf-16 encodes the sole C. elegans forkhead box O (FOXO) homologue; DAF-16 functions as a transcription factor that acts in the insulin/IGF-1-mediated signaling (IIS) pathway that regulates dauer formation, longevity, fat metabolism, stress response, and innate immunity; DAF-16 regulates these various processes through isoform-specific expression, isoform-specific regulation by different AKT kinases, and differential regulation of target genes; DAF-16 can interact with the CBP-1 transcription cofactor in vitro, and interacts genetically with other genes in the insulin signaling and with daf-12, which encodes a nuclear hormone receptor; DAF-16 is activated in response to DNA damage during development and co-regulated by EGL-27, alleviates DNA-damage-induced developmental arrest by inducing DAF-16-associated element (DAE)-regulated genes; DAF-16 is broadly expressed but displays isoform-specific tissue enrichment; DAF-16 localizes to both the cytoplasm and the nucleus, with the ratio between the two an important regulator of function.
Insulin-like receptor subunit beta;Receptor protein-tyrosine kinase;hypothetical protein
Locus: CELE_Y55D5A.5
Wormbase description: daf-2 encodes a receptor tyrosine kinase that is the C. elegans insulin/IGF receptor ortholog; DAF-2 activity is required for a number of processes in C. elegans, including embryonic and larval development, formation of the developmentally arrested dauer larval stage (diapause), larval developmental timing, adult longevity, reproduction, fat storage, salt chemotaxis learning, and stress resistance, including response to high temperature, oxidative stress, and bacterial infection; DAF-2 signals through a conserved PI 3-kinase pathway to negatively regulate the activity of DAF-16, a Forkhead-related transcription factor, by inducing its phosphorylation and nuclear exclusion; in addition, DAF-2 negatively regulates the nuclear localization, and hence transcriptional activity, of SKN-1 in intestinal nuclei; amongst the 38 predicted insulin-like molecules in C. elegans, genetic and microarray analyses suggest that at least DAF-28, INS-1, and INS-7 are likely DAF-2 ligands; genetic mosaic and tissue-specific promoter studies indicate that daf-2 can function cell nonautonomously and within multiple cell types to influence dauer formation and adult lifespan, likely by regulating the production of secondary endocrine signals that coordinate growth and longevity throughout the animal; temporal analysis of daf-2 function indicates that daf-2 regulates lifespan, reproduction, and diapause independently, at distinct times during the animal's life cycle.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Drosophila melanogaster | InR |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group