Lifespan changes: From wild type to age-1;skn-1

There is no network for this step.
Fullscreen mode
Hide graph

Genetic mutants with age-1, skn-1 alterations

    Names of genes are ordered alphabetically. For the order of interventions, please see the specific paper.
  • Temperature °C


  • Diet


  • Lifespan (days)


  • Lifespan change (compared to wild type)


  • Lifespan comparisons

    Double mutant age-1(hx546);skn-1(RNAi) has a lifespan of 19.8 days, while single mutant age-1(hx546) has a lifespan of 20.4 days and wild type has a lifespan of 17.3 days.

  • Type of interaction
    See methods

    Contains dependence

  • Citation
    View abstract

    Park SK et al., 2010, Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans. FASEB J. 24(2):383-92 PubMed 19783783 Click here to select all mutants from this PubMed ID in the graph

Search genes: age-1 skn-1
  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

Phosphatidylinositol 3-kinase age-1;hypothetical protein

Locus: CELE_B0334.8

Wormbase description: age-1 encodes the C. elegans ortholog of the phosphoinositide 3-kinase (PI3K) p110 catalytic subunit; AGE-1, supplied maternally and embryonically, is a central component of the C. elegans insulin-like signaling pathway, lying downstream of the DAF-2/insulin receptor and upstream of both the PDK-1 and AKT-1/AKT-2 kinases and the DAF-16 forkhead type transcription factor, whose negative regulation is the key output of the insulin signaling pathway; in accordance with its role in insulin signaling, AGE-1 activity is required for regulation of metabolism, life span, dauer formation, stress resistance, salt chemotaxis learning, fertility, and embryonic development; although the age-1 expression pattern has not yet been reported, ectopic expression studies indicate that pan-neuronal age-1 expression is sufficient to rescue life-span defects, while neuronal, intestinal, or muscle expression can partially rescue dauer formation, and neuronal or muscle expression can rescue metabolic defects.

  • Entrez ID
  • Symbol
  • GenAge
  • Wormbase ID

Protein skinhead-1;SKiNhead

Locus: CELE_T19E7.2

Wormbase description: skn-1 encodes a bZip transcription factor orthologous to the mammalian Nrf (Nuclear factor-erythroid-related factor) transcription factors; during early embryogenesis, maternally provided SKN-1 is required for specification of the EMS blastomere, a mesendodermal precursor that gives rise to pharyngeal, muscle, and intestinal cells; later, during postembryonic development, SKN-1 functions in the p38 MAPK pathway to regulate the oxidative stress response and in parallel to DAF-16/FOXO in the DAF-2-mediated insulin/IGF-1-like signaling pathway to regulate adult lifespan; in vitro assays indicate that SKN-1 can be directly phosphorylated by the AKT-1, AKT-2, and SGK-1 kinases that lie downstream of DAF-2 in the insulin signaling pathway and in vivo experiments suggest that this phosphorylation is essential for regulation of SKN-1 nuclear accumulation and hence, transcriptional regulator activity; in the early embryo, SKN-1 is detected at highest levels in nuclei of the P1 blastomere and its descendants through the 8-cell stage of embryogenesis; later in embryogenesis, SKN-1 is observed in all hypodermal and intestinal nuclei, with reporter constructs indicating that intestinal expression begins as early as the 50-100-cell stage; in larvae and young adults, SKN-1::GFP reporters are expressed in the intestine and ASI neurons, with expression in intestinal nuclei enhanced under conditions of stress or reduced DAF-2 signaling.

Orthologs of age-1;skn-1 in SynergyAge
Show in SynergyAge
Species Gene
Orthologs of age-1 in SynergyAge
Show in SynergyAge
Species Gene
Drosophila melanogaster Pi3K92E
Orthologs of skn-1 in SynergyAge
Show in SynergyAge
Species Gene

SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.

Read more about SynergyAge database

How to cite us

If you would like to cite this database please use:

Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020).

Robi Tacutu, Ph.D.
Head: Systems Biology of Aging Group, Bioinformatics & Structural Biochemistry Department
Institute of Biochemistry, Ground floor
Splaiul Independentei 296, Bucharest, Romania

Group webpage: