Lifespan changes: From wild type to age-1;cup-4
20
NGM
18.2
6.43%
Double mutant age-1(hx546);cup-4(RNAi) has a lifespan of 18.2 days, while single mutant age-1(hx546) has a lifespan of 20.3 days and wild type has a lifespan of 17.1 days.
Contains dependence
Park SK et al., 2010, Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans. FASEB J. 24(2):383-92 19783783 Click here to select all mutants from this PubMed ID in the graph
20
NGM
20.9
20.81%
Double mutant age-1(hx546);cup-4(RNAi) has a lifespan of 20.9 days, while single mutant age-1(hx546) has a lifespan of 20.4 days and wild type has a lifespan of 17.3 days.
Partially known monotony. Positive epistasis
Park SK et al., 2010, Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans. FASEB J. 24(2):383-92 19783783 Click here to select all mutants from this PubMed ID in the graph
Phosphatidylinositol 3-kinase age-1;hypothetical protein
Locus: CELE_B0334.8
Wormbase description: age-1 encodes the C. elegans ortholog of the phosphoinositide 3-kinase (PI3K) p110 catalytic subunit; AGE-1, supplied maternally and embryonically, is a central component of the C. elegans insulin-like signaling pathway, lying downstream of the DAF-2/insulin receptor and upstream of both the PDK-1 and AKT-1/AKT-2 kinases and the DAF-16 forkhead type transcription factor, whose negative regulation is the key output of the insulin signaling pathway; in accordance with its role in insulin signaling, AGE-1 activity is required for regulation of metabolism, life span, dauer formation, stress resistance, salt chemotaxis learning, fertility, and embryonic development; although the age-1 expression pattern has not yet been reported, ectopic expression studies indicate that pan-neuronal age-1 expression is sufficient to rescue life-span defects, while neuronal, intestinal, or muscle expression can partially rescue dauer formation, and neuronal or muscle expression can rescue metabolic defects.
Acetylcholine receptor-like protein cup-4
Locus: CELE_C02C2.3
Wormbase description: cup-4 encodes a non-alpha ligand-gated ion channel with similarity to the nicotinic acetylcholine receptors; cup-4 is required cell autonomously for efficient fluid endocytosis in coelomocytes; cup-4 mutant animals display reduced levels of plasma membrane phosphatidylinositol 4,5-bisphosphate, suggesting that CUP-4 may regulate endocytosis via regulation of phospholipase C activity; in addition, cup-4 mutants display disorganized clathrin and RME-1 at the coelomocyte plasma membrane; CUP-4::GFP is expressed in coelomocytes where it localizes to the cytoplasm, primarily to cytoplasmic vesicles.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Drosophila melanogaster | Pi3K92E |
Show in SynergyAge | |
---|---|
Species | Gene |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group