Lifespan changes: From age-1;fer-15 to multiple mutants
25
OP50
24.0
100.00%
Double mutant age-1(hx546);fer-15(b26) has a lifespan of 24.0 days, while wild type has a lifespan of 12.0 days.
Dorman JB et al., 1995, The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 141(4):1399-406 8601482 Click here to select all mutants from this PubMed ID in the graph
25
OP50
27.0
125.00%
Double mutant age-1(hx546);fer-15(b26) has a lifespan of 27.0 days, while wild type has a lifespan of 12.0 days.
Dorman JB et al., 1995, The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 141(4):1399-406 8601482 Click here to select all mutants from this PubMed ID in the graph
25
OP50
23.0
64.29%
Double mutant age-1(hx546);fer-15(b26) has a lifespan of 23.0 days, while wild type has a lifespan of 14.0 days.
Dorman JB et al., 1995, The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 141(4):1399-406 8601482 Click here to select all mutants from this PubMed ID in the graph
15
OP50
31.0
24.00%
Double mutant age-1(hx546);fer-15(b26) has a lifespan of 31.0 days, while wild type has a lifespan of 25.0 days.
Dorman JB et al., 1995, The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 141(4):1399-406 8601482 Click here to select all mutants from this PubMed ID in the graph
18
26.3
76.51%
Double mutant age-1(hx546);fer-15(b26) has a lifespan of 26.3 days, while wild type has a lifespan of 14.9 days.
Lakowski B, Hekimi S, 1996, Determination of life-span in Caenorhabditis elegans by four clock genes. Science. 272(5264):1010-3 8638122 Click here to select all mutants from this PubMed ID in the graph
Phosphatidylinositol 3-kinase age-1;hypothetical protein
Locus: CELE_B0334.8
Wormbase description: age-1 encodes the C. elegans ortholog of the phosphoinositide 3-kinase (PI3K) p110 catalytic subunit; AGE-1, supplied maternally and embryonically, is a central component of the C. elegans insulin-like signaling pathway, lying downstream of the DAF-2/insulin receptor and upstream of both the PDK-1 and AKT-1/AKT-2 kinases and the DAF-16 forkhead type transcription factor, whose negative regulation is the key output of the insulin signaling pathway; in accordance with its role in insulin signaling, AGE-1 activity is required for regulation of metabolism, life span, dauer formation, stress resistance, salt chemotaxis learning, fertility, and embryonic development; although the age-1 expression pattern has not yet been reported, ectopic expression studies indicate that pan-neuronal age-1 expression is sufficient to rescue life-span defects, while neuronal, intestinal, or muscle expression can partially rescue dauer formation, and neuronal or muscle expression can rescue metabolic defects.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Drosophila melanogaster | Pi3K92E |
Show in SynergyAge | |
---|---|
Species | Gene |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group