Lifespan changes: From wild type to cyc-2.1;daf-2;rsks-1
20
NGM
65.4
246.03%
Triple mutant cyc-2.1(RNAi);daf-2(e1370);rsks-1(ok1255) has a lifespan of 65.4 days, while single mutant cyc-2.1(RNAi) has a lifespan of 32.2 days, double mutant daf-2(e1370);rsks-1(ok1255) has a lifespan of 68.1 days and wild type has a lifespan of 18.9 days.
Contains dependence
Lan J et al., 2019, Translational Regulation of Non-autonomous Mitochondrial Stress Response Promotes Longevity. Cell Rep. 28(4):1050-1062 31340143 Click here to select all mutants from this PubMed ID in the graph
20
NGM
65.3
226.50%
Triple mutant cyc-2.1(RNAi);daf-2(e1370);rsks-1(ok1255) has a lifespan of 65.3 days, while single mutant cyc-2.1(RNAi) has a lifespan of 31.6 days, double mutant daf-2(e1370);rsks-1(ok1255) has a lifespan of 67.2 days and wild type has a lifespan of 20.0 days.
Contains dependence
Lan J et al., 2019, Translational Regulation of Non-autonomous Mitochondrial Stress Response Promotes Longevity. Cell Rep. 28(4):1050-1062 31340143 Click here to select all mutants from this PubMed ID in the graph
Cytochrome c 2.1
Locus: CELE_E04A4.7
Wormbase description: cyc-2.1 encodes, along with cyc-2.2, one of two C. elegans cytochrome c proteins; the product of cyc-2.1 is predicted to function in the electron transport chain by transferring electrons from respiratory chain Complex III to Complex IV; large-scale RNAi screens indicate the cyc-2.1 activity is required for embryonic and larval development as well as for normal brood sizes and growth rates.
Insulin-like receptor subunit beta;Receptor protein-tyrosine kinase;hypothetical protein
Locus: CELE_Y55D5A.5
Wormbase description: daf-2 encodes a receptor tyrosine kinase that is the C. elegans insulin/IGF receptor ortholog; DAF-2 activity is required for a number of processes in C. elegans, including embryonic and larval development, formation of the developmentally arrested dauer larval stage (diapause), larval developmental timing, adult longevity, reproduction, fat storage, salt chemotaxis learning, and stress resistance, including response to high temperature, oxidative stress, and bacterial infection; DAF-2 signals through a conserved PI 3-kinase pathway to negatively regulate the activity of DAF-16, a Forkhead-related transcription factor, by inducing its phosphorylation and nuclear exclusion; in addition, DAF-2 negatively regulates the nuclear localization, and hence transcriptional activity, of SKN-1 in intestinal nuclei; amongst the 38 predicted insulin-like molecules in C. elegans, genetic and microarray analyses suggest that at least DAF-28, INS-1, and INS-7 are likely DAF-2 ligands; genetic mosaic and tissue-specific promoter studies indicate that daf-2 can function cell nonautonomously and within multiple cell types to influence dauer formation and adult lifespan, likely by regulating the production of secondary endocrine signals that coordinate growth and longevity throughout the animal; temporal analysis of daf-2 function indicates that daf-2 regulates lifespan, reproduction, and diapause independently, at distinct times during the animal's life cycle.
Ribosomal protein S6 kinase beta
Locus: CELE_Y47D3A.16
Wormbase description: rsks-1 encodes a putative ribosomal protein S6 kinase (S6K) required additively with IFG-1 for normally high levels of protein synthesis, and for normally short lifespan; RSKS-1's effect on lifespan is independent of DAF-16, ISP-1, and SIR-2.1, and does not correlate with juglone resistance, but does correlate with abnormally high resistance to starvation and (perhaps) thermotolerance; RSKS-1 is required for normal juglone resistance, as well as normally rapid growth and normal brood sizes; RSKS-1 is expressed in E-lineage embryonic cells, and in pharyngeal and hypodermal cells of larvae and adults; RSKS-1 is orthologous to human RPS6KB1 (OMIM:608938) and RPS6KB2 (OMIM:608939).
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Drosophila melanogaster | InR |
Show in SynergyAge | |
---|---|
Species | Gene |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group