Lifespan changes: From wild type to C11H1.3;daf-2 / From C11H1.3;daf-2 to multiple mutants
25
22.7
54.42%
Fifty-seven gene inactivations (corresponding to 55 RNAi clones) more dramatically shortened the life span of daf-2 animals compared with daf-2;daf-16, but still shortened the life span of daf-2;daf-16 animals, suggesting that they function in a parallel/converging pathway to insulin/IGF1 signaling
Double mutant C11H1.3(RNAi);daf-2(e1370) has a lifespan of 22.7 days, while single mutant daf-2(e1370) has a lifespan of 36.7 days, single mutant C11H1.3(RNAi) has a lifespan of 13.3 days and wild type has a lifespan of 14.7 days.
Opposite lifespan effects of single mutants
Samuelson AV et al., 2007, Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev. 21(22):2976-94 18006689 Click here to select all mutants from this PubMed ID in the graph
hypothetical protein
Locus: CELE_C11H1.3
Wormbase description: C11H1.3 encodes a ring finger-domain containing protein with similarity to the mammlian MGRN1 (Mahogunin 1) and RNF157 proteins; by homology with MGRN1, C11H1.3 is predicted to function as a ubiquitin ligase that regulates protein catabolism via the proteasome; in C. elegans, C11H1.3 activity is required for normal localization and expression of the LET-23 EGF receptor in vulval cell lineages and for normal vulval development; C11H1.3 is also required for normal GABAergic neurotransmission; C11H1.3 is expressed in the nervous system, the pharynx, and in the vulval precursors cells.
Insulin-like receptor subunit beta;Receptor protein-tyrosine kinase;hypothetical protein
Locus: CELE_Y55D5A.5
Wormbase description: daf-2 encodes a receptor tyrosine kinase that is the C. elegans insulin/IGF receptor ortholog; DAF-2 activity is required for a number of processes in C. elegans, including embryonic and larval development, formation of the developmentally arrested dauer larval stage (diapause), larval developmental timing, adult longevity, reproduction, fat storage, salt chemotaxis learning, and stress resistance, including response to high temperature, oxidative stress, and bacterial infection; DAF-2 signals through a conserved PI 3-kinase pathway to negatively regulate the activity of DAF-16, a Forkhead-related transcription factor, by inducing its phosphorylation and nuclear exclusion; in addition, DAF-2 negatively regulates the nuclear localization, and hence transcriptional activity, of SKN-1 in intestinal nuclei; amongst the 38 predicted insulin-like molecules in C. elegans, genetic and microarray analyses suggest that at least DAF-28, INS-1, and INS-7 are likely DAF-2 ligands; genetic mosaic and tissue-specific promoter studies indicate that daf-2 can function cell nonautonomously and within multiple cell types to influence dauer formation and adult lifespan, likely by regulating the production of secondary endocrine signals that coordinate growth and longevity throughout the animal; temporal analysis of daf-2 function indicates that daf-2 regulates lifespan, reproduction, and diapause independently, at distinct times during the animal's life cycle.
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Show in SynergyAge | |
---|---|
Species | Gene |
Drosophila melanogaster | InR |
SynergyAge database hosts high-quality, manually curated information about the synergistic and antagonistic lifespan effects of genetic interventions in model organisms, also allowing users to explore the longevity relationships between genes in a visual way.
If you would like to cite this database please use:
Bunu, G., Toren, D., Ion, C. et al. SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Sci Data 7, 366 (2020). https://doi.org/10.1038/s41597-020-00710-z
Group webpage: www.aging-research.group